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We compare the degree of approximation to L 2( -TT, TT) by nth degree trigono­
metric polynomials, with the degree of approximation by trigonometric
n-nomials, which are linear combinations, with constant (complex) coefficients, of
any 2n + 1 members of the sequence {exp (ikx)}, -OCJ < k < OCJ.

If n is a nonnegative integer and An is a set of 211 + I distinct integers,
we call a function P(x) of the form

P(x) = L ak exp(ikx),
kEAn

(1)

where the ak are complex constants, a trigonometric n-nomial. We investigate
the degree of approximation to the space V( -1T, 1T) of complex-valued,
square integrable functions on (-1T, 1T) by trigonometric n-nomials, and
compare it to the degree ofapproximation by the set:Tn ofordinary nth degree
trigonometric polynomials.

For the purpose of comparison we concentrate our attention on the
subset.'/' of L2 which consists of those f E V satisfying

wtCh) ~ h for all h;?; 0, (2)

where wtCh) is the V modulus of continuity off,

wtCh) = sup II/(x + t) - l(x)IIL2 •

It I«h
(3)

Throughout the paper, f will be an V function with Fourier coefficients
Ck , - 00 < k < 00. We let Bn(f) be the set of 2n + 1 integers k where the
maximum values of I Ck I occur. In cases of equality, we take the k with
smaller absolute value, and then (if necessary) we take I k I before - 1 k I.
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(a)

Given An' we let P(An) denote the set of all functions of the form (I),
and we let Pn denote the set of all trigonometric n-nomials (i.e., the set of
all P E P(An) for all An)' We define the following degrees of approximation:

E(f, An) = inf II! - P II,
pep(A,,)

(b) C(!f, An) = sup E(f, An),
fef/'

(c)

(d)

(e)

Cn*(!f) = sup inf ll!- Til,
fef/' Te.r"

Dn(f) = inf II! - P II,
PeP"

~n(!f) = sup Dn(f).
fef/'

Thus, we wish to compare Cn*(!f) and ~n(!f).

Our principal tool for studying !f will be the following well known
lemma, which we prove for the sake of completeness.

Proof A straightforward calculation shows that

00

[W,(h))2 = sup 2 LIck \2 (l - cos kt).
It I<;;;h -00

Thus, we must show that

~ I \2 1 - cos kt ~ 1
!::, Ck th2 ""

for all I t I ~ h

if and only if L:oo k 2 I Ck \2 ~ I.
First, suppose that L:oo k 2 I Ck 12 ~ 1. Then, since 1 - cos x ~ tx2 for

all x,

00

~ L k 2 I Ck 12 ~ 1.
-00

Suppose, on the other hand, that L:oo k 2 I Ck \2 > 1, so that L~ k 2 I Ck \2 =
P > 1 for two integers A < B.
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If we let € = P - 1 and rewrite p as

we see that, since

we can take h small enough so that

and then

;., I 12 1 - cos kh '- ~ I 12 1 - cos kh 1
LJ Ck ~h2 r LJ Ck lh2 > P - € = ,
-00 "2 A •
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and Lemma 1 is proved.
For our first theorem we have (in our notation) the well known charac­

terization of best approximation in V.

By applying Lemma 1, along with Theorem 1, we get the following
theorem.

THEOREM 2. If 0 E An, then C(f/, An) = l1Y, where Y = yeAn) =
mink¢A I k I. If0 i An, then C(f/, An) = +00...

Proof The case when 01= An is trivial, so assume that 0 E An. LetfE f/.
Then

00

1 ~ L k2
I Ck 1

2 = L k2 [ Ck [2 + L k2
I Ck 1

2

-00 ke An k~An

~ L k 2
[ Ck [2 ~ y2 LIck [2

k~A,. k~A,.
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so that, for f E .Y',
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[E(f, A n )]2 = LIck 1
2 ~ l/y2,

MAn

and the upper bound can be achieved by taking g(x) = y-l exp(iyx) if
y = k, or g(x) = y-l exp( -iyx) if y = -k.

By applying Theorem 2 to the set An = {O, ±l,... , ±n} we immediately
obtain the following corollary.

COROLLARY. Cn*(Y') = Ij(n + 1).

For our first result concerning the set P n we have the following theorem.

Proof This follows immediately from Theorem 1 and the fact that
Dn(f) = inf E(f, An), where the infimum is taken over all possible An .

We now have our main result, which gives the exact value of .@n(Y').

THEOREM 4. [.@n(Y')]2 = 4j((3n + 1)(3n + 2)).

Proof. In order to prove Theorem 4 we require two lemmas, the first of
which follows.

LEMMA 2. Let Y'* = {g: g E Y' and Bn(g) = {O, ±l,... , ±n}}. IfIE Y',
then there is agE //* such that Dn(g) = Dn(f).

Proof Define the following sets:

P = {k: I k I ~ nand k E Bn(f)},

Q = {k: I k I > nand k E Bn(f)},

R = {k: I k I ~ nand k ¢: Bn(f)},

S = {k: I k I > nand k ¢: Bi!)}.

Obviously Q and R contain the same number of integers, and we let
q +-H be a one-to-one correspondence between these two sets. We now
define the function g(x) by g(x) ,...., 'L:oo bk exp(ikx), where

if k E P or k E S,
if k = rER,
if k = q E Q.
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Clearly Theorem 3 implies that Dn(g) = Dn(f), and
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00

L: k2
I bk 1

2 = 1 k2
1 bk 1

2 + 1 k 2
1 bk 1

2 + 1 k2
1 bk 1

2 + 1 k 2
1 bk 1

2
-00 keP keO keR kes

= L k 2
1 Ck 1

2 + L k 2
1 Ck 1

2 + L: q2 1 Cr 1
2 + L r2

I Cq 1
2

MP MS ~O NR

-00

where the first inequality follows from the fact that 1 Cq 1 :? 1 Cr 1 and r2 < q2,
so that r2

1 Cq 1
2 + q2 I Cr 1

2 ~ r2
I Cr 1

2 + q2 I Cq 1
2 for all q = q(r) E Q and

r = r(q) E R. Thus g E Y*, and the proof of Lemma 2 is complete.
Returning to Theorem 4, we see that !Z1n(Y) = SUPfe.9"* Dn(f). Therefore,

by Theorem 3, we have [!Z1n(Y)]2 = max Llk!>n I Ck 1
2

, where the maximum
is taken over all sequences {Ck}~oo satisfying

(i) L:oo k2 ICk 12 ~ I and

(ii) [j 1 ~ n < I m 1 implies 1 Cm I ~ 1 Cj I·

We let ex be this maximum, and we let fJ = max Lk>n ak2, where the
maximum is taken over all sequences {ak}~ satisfying

(iii) i ~ n < j implies 0 ~ aj ~ ai and

(iv) I:; k2ak2 ~ 1.

For our final lemma we have the following.

LEMMA 3. ex = fJ.

Proof Given a sequence {Ck} satisfying (i) and (ii), define ak ~ 0 by
ak2 = 1 C_k 1

2 + I Ck 1
2

, k ~ 1. Then

00 00 00

L k2ak2 = L k 2
[1 C-k 1

2 + I Ck 1
2

] = L: k 2
1 Ck 1

2 ~ I,
I I -00

and I ~ i < n < j implies aj2 = I C-j 1
2 + I Cj 1

2 ~ 1 C-i 1
2 + 1 Ci 1

2 = al.
Furthermore, Lk>n ak2 = Llkl>n I Ck 1

2
, so that fJ ~ ex.

On the other hand, suppose {ak}~ is a sequence satisfying (iii) and (iv).
Define {Ck}~oo by C~k = Ck2 = tak2 for k :? 1, and Co = max1';;k<00 ak' Then

00 00 00

L: k 2
1 Ck 1

2 = L tk2a~kl = L k2ak2 ~ I,
-00 -00 1
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while 0 < I i I ~ n < IJ I implies cl = taTil ~ tOTil = Ci
2

, and again
Lk>n ak

2 = Llkl>n Ck
2

. Thus, ex ?: f3, so that ex = fl, completing the proof
of Lemma 3.

To conclude the proof of Theorem 4 it remains to evaluate fl = [.@n(9')]2.
Toward this end, we let J = [l(n + 1)], and we observe that

and

By (iv), we have

n+J-l

L k 2 > (J - I)(n + J)2
k~l

n+J

J(n + J + 1)2 > .L k 2
•

k=l

(4)

(5)

n r:t:) n+J co

1 - L k2ak2 ?: L k20k2 ?: L k2ak2 + (n + J + 1)2 L Ok2
• (6)

n+l n+l n+J+l

Using (iii) and (4), we see that

J ",n+J k2 J( + ')2 J ",n+J k2 J( + ')2
"~k~l - n I 2 . 2 ,,~k~l - n I
L,., J an+i "':::: mID ak L,., J
i=l 1:S;;;k~n i=l

Combining (6) and (7) with (5) yields

n+J n+J

= I/J L k 2 I am
2 + (n + J + 1)2

k~l m=n+l

n~ 00 n~ 00

= I/J L k 2 L am
2 + [en + J + 1)2 - I/J L k 2

] I am
2

k~l m~n+l k~l m~n+J+l

n+J 00

?: I/J L k2 L am
2

,

k=l m~n+l
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or
n+J

l: ak
2 ~ J/l: k 2

•
k>n k=l

Moreover, the upper bound in (8) can be attained by setting
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(8)

a·2 =,
o

for I ~ i ~ n + J,

for i > n + J.

It is clear that with this choice for {ai}, (iii) and (iv) are satisfied, and

n+J

I ak
2 = J/I k 2

•
k>n k~l

Therefore,

n+J

f3 = [:»n(Y')]2 = J / L k2,
k=l

and Theorem 4 now follows immediately from the formula

N

L k 2 = (N(N + 1)(2N + 1))/6.
k=l

Finally, combining the corollary to Theorem 2 with Theorem 4, we see
that :»nCY') is asymptotic to fen *(.9"), and our comparison of these two
means of approximation in Y' is complete.


