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We compare the degree of approximation to L*(—m, =) by nth degree trigono-
metric polynomials, with the degree of approximation by trigonometric
n-nomials, which are linear combinations, with constant (complex) coefficients, of
any 21 + 1 members of the sequence {exp (tkx)}, —© < k < co,

If n is a nonnegative integer and A4, is a set of 2n + 1 distinct integers,
we call a function P(x) of the form

P(x) = 3 ay exp(ikx), I

ked,

where the g, are complex constants, a trigonometric n-nomial. We investigate
the degree of approximation to the space L% —m,w) of complex-valued,
square integrable functions on (—m, ) by trigonometric n-nomials, and
compare it to the degree of approximation by the set 7, of ordinary nth degree
trigonometric polynomials.

For the purpose of comparison we concentrate our attention on the
subset % of L? which consists of those f€ L2 satisfying

wih) <h forall =0, 2

where wg(#) is the L? modulus of continuity of £,

ws(h) = sup || f(x + 1) — f(x)].2. 3)

ltI<h
Throughout the paper, f will be an L2 function with Fourier coefficients
¢, —oo <k < oo. We let B,(f) be the set of 2n -+ 1 integers k where the
maximum values of | ¢, | occur. In cases of equality, we take the k with
smaller absolute value, and then (if necessary) we take | k| before — | & |.

373

Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.



374 J. S. BYRNES

Given 4, , we let P(A4,) denote the set of all functions of the form (1),
and we let P, denote the set of all trigonometric n-nomials (i.e., the set of
all P e P(4,) for all 4,). We define the following degrees of approximation:

(@) E(f, 4, = _inof |f— Pl

PeP(4,)

(b) &(, 4,) = sup E(f, 4,),
fe&

©  EXS) =sup inf ||f— T},

fe& Ted ,
@ DN = jof If - Pl,
(©  Du(&) = sup Du(f).
fe&

Thus, we wish to compare &,*(&) and 2,.(%).
Our principal tool for studying ¥ will be the following well known
lemma, which we prove for the sake of completeness.

LemMA 1. fe Fifandonly if 70 k2l c, 12 < 1

Proof. A straightforward calculation shows that

[w/()]2 = sup 2 i | ex 12 (1 — cos kf).
<k -

Thus, we must show that

Zlckl2 ;‘;Sktgl forall |¢]<h

if and only if 7, k2| ¢, 12 < 1.
First, suppose that 3" k2| ¢, |2 << 1. Then, since 1 — cos x << $x? for
all x,

Zl k|2 ;;Skt i|ck\21}(ﬁ?z=;k2\ckl22—z

«w©

KYRlal<1

Suppose, on the other hand, that T°, k? | ¢ 12 > 1, so that Zﬁ k2| cp |2 =
p > 1 for two integers 4 < B.
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If we let € = p — 1 and rewrite p as

l 1 — (1 — 3k%h2
P=§:‘Ckl¢ (%hzé )

2 cos kh cos kh — (1 — k22
= Z | ex |2 1hzs + Z | ex [ l(hz )
a g 3

we see that, since

tim 98 kh — (1 — %kzhz)
k] 3 0,

we can take 4 small enough so that

B — 1L2h2
0<Zicklzcoskh I2 ?gkh) .
1 h

and then

B
Z e, 12 ,}ng kh >3 e [2 — cos kh
A

and Lemma 1 is proved.
For our first theorem we have (in our notation) the well known charac-
terization of best approximation in L2,

THEOREM 1. [E(f, A,))? = 2ked, | e 12

By applying Lemma 1, along with Theorem I, we get the following
theorem.

TueoreM 2. If 0e€A,, then &(F, A,) =1y, where v =9y(4,) =
minge, k| If0¢ A,, then 8(F, A,) = + 0.

Proof. The case when 0 ¢ A, is trivial, so assume that 0 € 4,, . Let f¢ &,
Then

0

1>zk216k|2= Z K2 e |+ Z K2 | ey |2

ke4, kEA,

= Z ke |2 =92 Z [ [?
kéAn kéA,
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so that, for fe .,

[Ef, 4P = Y a2 < 1/ or &(F, 4,) < lfy,
kEA,

and the upper bound can be achieved by taking g(x) = y~!exp(iyx) if
y =k, or g(x) =y texp(—iyx) if y = —k.

By applying Theorem 2 to the set 4, = {0, +1,..., +-n} we immediately
obtain the following corollary.

COROLLARY. &, *(%) = 1/(n + D).
For our first result concerning the set P, we have the following theorem.
THEOREM 3.  [Dn(f)P = Laen,in | ci 1%
Proof. This follows immediately from Theorem 1 and the fact that
D,(f) = inf E(f, A,), where the infimum is taken over all possible 4,, .
We now have our main result, which gives the exact value of Z,(%).
THEOREM 4. [2,())? = 4/((3n + D(3n + 2)).
Proof. 1In order to prove Theorem 4 we require two lemmas, the first of
which follows.
LemMa 2. Let $* ={g:ge ¥ and B,(g) ={0, +1,..., +n}}. If fe &,
then there is a g € /* such that D,(g) = D,(f).
Proof. Define the following sets:
P ={k:\k| <nand ke B,f)},
O =tk: k| > nand ke B,(f)},
R = {k: | k| < nand k¢ B,(f)},
S =¢{k: k| >nrand k ¢ B,(f)}.

Obviously @ and R contain the same number of integers, and we let
g <> r be a one-to-one correspondence between these two sets. We now
define the function g(x) by g(x) ~ 3", b, exp(ikx), where

C if keP or keSS,
b, = (¢, if k=reR,
¢,y if k=gqeQ.
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Clearly Theorem 3 implies that D,(g) = D,(f), and

LRI E=Y RGP+ Y R P+ ) Kb P+ ) Kby

keP keQ keR keS
=Y KlalP+ Y RlalP+ Y ¢le*+ ) rtlel?
keP keSS € Q r€R

<Y Rlal<L,

—0

where the first inequality follows from the fact that | ¢, | == | ¢, | and r% < g2,
so that r?| ¢, |24+ q%|c, 2 <r2|c, |2 +¢q2| ¢, |? for all g =¢q(r)e @ and
r =r(g) € R. Thus g € &*, and the proof of Lemma 2 is complete.

Returning to Theorem 4, we see that 2,(%) = supseg« D,(f). Therefore,
by Theorem 3, we have [2,(¥)]? = max ¥ |ui>n | €& |3 Where the maximum
is taken over all sequences {c,}*,, satisfying

(i) T2,k cl2<1and
@) |jl<n<|m|implies|c,| <|c¢;l.

We let o be this maximum, and we let 8 = max ¥ ., a;? where the
maximum is taken over all sequences {a,}; satisfying

(ili) 7 < n < jimplies 0 < @; < g; and
(iv) X7 ka2 < 1.

For our final lemma we have the following.

LemMMA 3. a=f.

Proof. Given a sequence {c,} satisfying (i) and (ii), define a; >> 0 by
a2 =|c|®+|c | k > 1. Then

@

YRaF =Yl P+ lalfl= Y lal<],
1 1 —

and 1 <i<n<j implies a2 =|c_; 24| 2<|c; P+ |c;|?=0a’
Furthermore, 3., @2 = 3 jxi>n | €2 |2, 5O that B > a.

On the other hand, suppose {a;}; is a sequence satisfying (iii) and (iv).
Define {¢;}°, by ¢?, = ¢;2 = a2 for k > 1, and ¢, = max, << a; . Then

el

LR P =) $Kaly = Y K'a” <1,
= Z 1

o

640/9/4-6
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while 0 <|i|<n<|j| implies ¢?—= 44}, <30} =c? and again
Dkon ArE = X |psn €. Thus, o > B, so that o = 3, completing the proof

of Lemma 3.

To conclude the proof of Theorem 4 it remains to evaluate 8 = [2,(¥)]2.

Toward this end, we let J = [4(n 4+ 1)], and we observe that

n+J--1

Y o>~ D+ JyR Q)
k=1
and
n+J
Jn+J+ 12> 3 k2 )
Fe=1
By (iv), we have
n © n+J
1 =Y ka2> )Y a2 = ), ka2 + (n+ J + 1) Z a2 (6)
1 n+1 n+l n+J41
Using (iii) and (4), we see that
"k — Jn + iR Lymkr — Jn + i)
ZZ 5 (n ) 03+i<11\<1}12 akzt; p e 5 ( )
= lgklg i a? kg k< k;l ka2 @)
Combining (6) and (7) with (5) yields
J ercH‘lJ k2 — J(n + l) n+J @ .
1>y &= — o+ Y Kait@+J+1 Y 4
; k=nt1 k=n+J+1
J n+J 2 _ )
— Z [ 1 k JJ(n + 1) + (n + t)z] afm + 4T+ 1)2 Z ak2
i=1 k=n+J+1
n+J n+J ©
=1/JZk2 Y al+m+JF+1E Y a4l
=1 m=n+1 k=n+J+1
n+J n+J @©
=17 Y K Z an? + [(n+J+ 12— 1/J Y kz] Y al
k=1 m=n+1 k=1 m=n+J+1
n+J

=147 Y k2 Z am?,

k=1 m=n+1
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or
n+J

Y at<J/Y K @®)

k>n

Moreover, the upper bound in (8) can be attained by setting

n+J

2 I/Zk2, for 1 <i<<n+J,
a;” = k=1
0 for i>n+J.

It is clear that with this choice for {a;}, (iii} and (iv) are satisfied, and

n+J

Y, @t = J/Z:1 k2.

k>n

Therefore,

n+J
B=I2.(NP=J]Y I,
k=1
and Theorem 4 now follows immediately from the formula

Y. k2 = (NN + 12N + )6,
k=1

Finally, combining the corollary to Theorem 2 with Theorem 4, we see
that 2,(%) is asymptotic to §&6,*(%), and our comparison of these two
means of approximation in % is complete.



