L^{2} Approximation with Trigonometric n-nomials

J. S. Byrnes
Department of Mathematics, University of Massachusetts at Boston, Boston, Massachusetts 02116
Communicated by Oved Shisha

Received November 18, 1971

Abstract

We compare the degree of approximation to $L^{2}(-\pi, \pi)$ by nth degree trigonometric polynomials, with the degree of approximation by trigonometric n-nomials, which are linear combinations, with constant (complex) coefficients, of any $2 n+1$ members of the sequence $\{\exp (i k x)\},-\infty<k<\infty$.

If n is a nonnegative integer and A_{n} is a set of $2 n+1$ distinct integers, we call a function $P(x)$ of the form

$$
\begin{equation*}
P(x)=\sum_{k \in A_{n}} a_{k} \exp (i k x) \tag{1}
\end{equation*}
$$

where the a_{k} are complex constants, a trigonometric n-nomial. We investigate the degree of approximation to the space $L^{2}(-\pi, \pi)$ of complex-valued, square integrable functions on $(-\pi, \pi)$ by trigonometric n-nomials, and compare it to the degree of approximation by the set \mathscr{T}_{n} of ordinary nth degree trigonometric polynomials.

For the purpose of comparison we concentrate our attention on the subset \mathscr{S} of L^{2} which consists of those $f \in L^{2}$ satisfying

$$
\begin{equation*}
\omega_{f}(h) \leqslant h \quad \text { for all } \quad h \geqslant 0 \tag{2}
\end{equation*}
$$

where $\omega_{f}(h)$ is the L^{2} modulus of continuity of f,

$$
\begin{equation*}
\omega_{f}(h)=\sup _{|t| \leqslant h}\|f(x+t)-f(x)\|_{L^{2}} \tag{3}
\end{equation*}
$$

Throughout the paper, f will be an L^{2} function with Fourier coefficients $c_{k},-\infty<k<\infty$. We let $B_{n}(f)$ be the set of $2 n+1$ integers k where the maximum values of $\left|c_{k}\right|$ occur. In cases of equality, we take the k with smaller absolute value, and then (if necessary) we take $|k|$ before $-|k|$.

Given A_{n}, we let $P\left(A_{n}\right)$ denote the set of all functions of the form (1), and we let P_{n} denote the set of all trigonometric n-nomials (i.e., the set of all $P \in P\left(A_{n}\right)$ for all $\left.A_{n}\right)$. We define the following degrees of approximation:
(a) $E\left(f, A_{n}\right)=\inf _{P \in P\left(A_{n}\right)}\|f-P\|$,
(b) $\mathscr{E}\left(\mathscr{S}, A_{n}\right)=\sup _{f \in \mathscr{S}} E\left(f, A_{n}\right)$,
(c) $\quad \mathscr{E}_{n}^{*}(\mathscr{S})=\sup _{f \in \mathscr{S}} \inf _{T \in \mathscr{F}_{n}}\|f-T\|$,
(d) $\quad D_{n}(f)=\inf _{P \in P_{n}}\|f-P\|$,
(e) $\quad \mathscr{D}_{n}(\mathscr{F})=\sup _{f \in \mathscr{S}} D_{n}(f)$.

Thus, we wish to compare $\mathscr{E}_{n}{ }^{*}(\mathscr{S})$ and $\mathscr{D}_{n}(\mathscr{S})$.
Our principal tool for studying \mathscr{S} will be the following well known lemma, which we prove for the sake of completeness.

Lemma 1. $f \in \mathscr{S}$ if and only if $\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1$.
Proof. A straightforward calculation shows that

$$
\left[\omega_{f}(h)\right]^{2}=\sup _{|t| \leqslant h} 2 \sum_{-\infty}^{\infty}\left|c_{k}\right|^{2}(1-\cos k t) .
$$

Thus, we must show that

$$
\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2} \frac{1-\cos k t}{\frac{1}{2} h^{2}} \leqslant 1 \quad \text { for all } \quad|t| \leqslant h
$$

if and only if $\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1$.
First, suppose that $\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1$. Then, since $1-\cos x \leqslant \frac{1}{2} x^{2}$ for all x,

$$
\begin{aligned}
\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2} \frac{1-\cos k t}{\frac{1}{2} h^{2}} & \leqslant \sum_{-\infty}^{\infty}\left|c_{k}\right|^{2} \frac{\frac{1}{2}(k t)^{2}}{\frac{1}{2} h^{2}}=\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \frac{t^{2}}{h^{2}} \\
& \leqslant \sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1
\end{aligned}
$$

Suppose, on the other hand, that $\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2}>1$, so that $\sum_{A}^{B} k^{2}\left|c_{k}\right|^{2}=$ $\rho>1$ for two integers $A<B$.

If we let $\epsilon=\rho-1$ and rewrite ρ as

$$
\begin{aligned}
\rho & =\sum_{A}^{B}\left|c_{k}\right|^{2} \frac{1-\left(1-\frac{1}{2} k^{2} h^{2}\right)}{\frac{1}{2} h^{2}} \\
& =\sum_{A}^{B}\left|c_{k}\right|^{2} \frac{1-\cos k h}{\frac{1}{2} h^{2}}+\sum_{A}^{B}\left|c_{k}\right|^{2} \frac{\cos k h-\left(1-\frac{1}{2} k^{2} h^{2}\right)}{\frac{1}{2} h^{2}}
\end{aligned}
$$

we see that, since

$$
\lim _{h \rightarrow 0} \frac{\cos k h-\left(1-\frac{1}{2} k^{2} h^{2}\right)}{\frac{1}{2} h^{2}}=0
$$

we can take h small enough so that

$$
0<\sum_{A}^{B}\left|c_{k}\right|^{2} \frac{\cos k h-\left(1-\frac{1}{2} k^{2} h^{2}\right)}{\frac{1}{2} h^{2}}<\epsilon
$$

and then

$$
\sum_{-\infty}^{\infty}\left|c_{k}\right|^{2} \frac{1-\cos k h}{\frac{1}{2} h^{2}} \geqslant \sum_{A}^{B}\left|c_{k}\right|^{2} \frac{1-\cos k h}{\frac{1}{2} h^{2}}>\rho-\epsilon=1,
$$

and Lemma 1 is proved.
For our first theorem we have (in our notation) the well known characterization of best approximation in L^{2}.

Theorem 1. $\quad\left[E\left(f, A_{n}\right)\right]^{2}=\sum_{k \notin A_{n}}\left|c_{k}\right|^{2}$.
By applying Lemma 1, along with Theorem 1, we get the following theorem.

Theorem 2. If $0 \in A_{n}$, then $\mathscr{E}\left(\mathscr{P}, A_{n}\right)=1 / \gamma$, where $\gamma=\gamma\left(A_{n}\right)=$ $\min _{k \notin A_{n}}|k|$. If $0 \notin A_{n}$, then $\mathscr{E}\left(\mathscr{S}, A_{n}\right)=+\infty$.

Proof. The case when $0 \notin A_{n}$ is trivial, so assume that $0 \in A_{n}$. Let $f \in \mathscr{S}$. Then

$$
\begin{aligned}
1 & \geqslant \sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2}=\sum_{k \in A_{n}} k^{2}\left|c_{k}\right|^{2}+\sum_{k \in A_{n}} k^{2}\left|c_{k}\right|^{2} \\
& \geqslant \sum_{k \notin A_{n}} k^{2}\left|c_{k}\right|^{2} \geqslant \gamma^{2} \sum_{k \in A_{n}}\left|c_{k}\right|^{2}
\end{aligned}
$$

so that, for $f \in \mathscr{S}$,

$$
\left[E\left(f, A_{n}\right)\right]^{2}=\sum_{k \notin A_{n}}\left|c_{k}\right|^{2} \leqslant 1 / \gamma^{2}, \quad \text { or } \quad \mathscr{E}\left(\mathscr{S}, A_{n}\right) \leqslant 1 / \gamma
$$

and the upper bound can be achieved by taking $g(x)=\gamma^{-1} \exp (i \gamma x)$ if $\gamma=k$, or $g(x)=\gamma^{-1} \exp (-i \gamma x)$ if $\gamma=-k$.

By applying Theorem 2 to the set $A_{n}=\{0, \pm 1, \ldots, \pm n\}$ we immediately obtain the following corollary.

Corollary. $\quad \mathscr{E}_{n}{ }^{*}(\mathscr{P})=1 /(n+1)$.
For our first result concerning the set P_{n} we have the following theorem.
Theorem 3. $\quad\left[D_{n}(f)\right]^{2}=\sum_{k \notin B_{n}(f)}\left|c_{k}\right|^{2}$.
Proof. This follows immediately from Theorem 1 and the fact that $D_{n}(f)=\inf E\left(f, A_{n}\right)$, where the infimum is taken over all possible A_{n}.

We now have our main result, which gives the exact value of $\mathscr{D}_{n}(\mathscr{S})$.

Theorem 4. $\left[\mathscr{D}_{n}(\mathscr{S})\right]^{2}=4 /((3 n+1)(3 n+2))$.
Proof. In order to prove Theorem 4 we require two lemmas, the first of which follows.

Lemma 2. Let $\mathscr{S}^{*}=\left\{g: g \in \mathscr{S}\right.$ and $\left.B_{n}(g)=\{0, \pm 1, \ldots, \pm n\}\right\}$. If $f \in \mathscr{P}$, then there is a $g \in \mathscr{S}^{*}$ such that $D_{n}(g)=D_{n}(f)$.

Proof. Define the following sets:

$$
\begin{aligned}
& P=\left\{k:|k| \leqslant n \text { and } k \in B_{n}(f)\right\}, \\
& Q=\left\{k:|k|>n \text { and } k \in B_{n}(f)\right\}, \\
& R=\left\{k:|k| \leqslant n \text { and } k \notin B_{n}(f)\right\}, \\
& S=\left\{k:|k|>n \text { and } k \notin B_{n}(f)\right\} .
\end{aligned}
$$

Obviously Q and R contain the same number of integers, and we let $q \leftrightarrow r$ be a one-to-one correspondence between these two sets. We now define the function $g(x)$ by $g(x) \sim \sum_{-\infty}^{\infty} b_{k} \exp (i k x)$, where

$$
b_{k}= \begin{cases}c_{k} & \text { if } k \in P \text { or } \quad k \in S \\ c_{q} & \text { if } k=r \in R \\ c_{r} & \text { if } k=q \in Q\end{cases}
$$

Clearly Theorem 3 implies that $D_{n}(g)=D_{n}(f)$, and

$$
\begin{aligned}
\sum_{-\infty}^{\infty} k^{2}\left|b_{k}\right|^{2} & =\sum_{k \in P} k^{2}\left|b_{k}\right|^{2}+\sum_{k \in O} k^{2}\left|b_{k}\right|^{2}+\sum_{k \in R} k^{2}\left|b_{k}\right|^{2}+\sum_{k \in S} k^{2}\left|b_{k}\right|^{2} \\
& =\sum_{k \in P} k^{2}\left|c_{k}\right|^{2}+\sum_{k \in S} k^{2}\left|c_{k}\right|^{2}+\sum_{q \in O} q^{2}\left|c_{r}\right|^{2}+\sum_{r \in R} r^{2}\left|c_{q}\right|^{2} \\
& \leqslant \sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1
\end{aligned}
$$

where the first inequality follows from the fact that $\left|c_{q}\right| \geqslant\left|c_{r}\right|$ and $r^{2}<q^{2}$, so that $r^{2}\left|c_{q}\right|^{2}+q^{2}\left|c_{r}\right|^{2} \leqslant r^{2}\left|c_{r}\right|^{2}+q^{2}\left|c_{q}\right|^{2}$ for all $q=q(r) \in Q$ and $r=r(q) \in R$. Thus $g \in \mathscr{S}^{*}$, and the proof of Lemma 2 is complete.

Returning to Theorem 4, we see that $\mathscr{D}_{n}(\mathscr{S})=\sup _{f \in \mathscr{S} *} D_{n}(f)$. Therefore, by Theorem 3, we have $\left[\mathscr{D}_{n}(\mathscr{S})\right]^{2}=\max \sum|k|>n\left|c_{k}\right|^{2}$, where the maximum is taken over all sequences $\left\{c_{k}\right\}_{-\infty}^{\infty}$ satisfying
(i) $\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1$ and
(ii) $|j| \leqslant n<|m|$ implies $\left|c_{m}\right| \leqslant\left|c_{j}\right|$.

We let α be this maximum, and we let $\beta=\max \sum_{k>n} a_{k}{ }^{2}$, where the maximum is taken over all sequences $\left\{a_{k}\right\}_{1}^{\infty}$ satisfying
(iii) $i \leqslant n<j$ implies $0 \leqslant a_{j} \leqslant a_{i}$ and
(iv) $\Sigma_{1}^{\infty} k^{2} a_{k}{ }^{2} \leqslant 1$.

For our final lemma we have the following.
Lemma 3. $\alpha=\beta$.
Proof. Given a sequence $\left\{c_{k}\right\}$ satisfying (i) and (ii), define $a_{k} \geqslant 0$ by $a_{k}{ }^{2}=\left|c_{-k}\right|^{2}+\left|c_{k}\right|^{2}, k \geqslant 1$. Then

$$
\sum_{1}^{\infty} k^{2} a_{k}^{2}=\sum_{1}^{\infty} k^{2}\left[\left|c_{-k}\right|^{2}+\left|c_{k}\right|^{2}\right]=\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2} \leqslant 1,
$$

and $1 \leqslant i<n<j$ implies $a_{j}{ }^{2}=\left|c_{-j}\right|^{2}+\left|c_{j}\right|^{2} \leqslant\left|c_{-i}\right|^{2}+\left|c_{i}\right|^{2}=a_{i}{ }^{2}$. Furthermore, $\sum_{k>n} a_{k e}{ }^{2}=\sum_{|k|>n}\left|c_{k}\right|^{2}$, so that $\beta \geqslant \alpha$.

On the other hand, suppose $\left\{a_{k}\right\}_{1}^{\infty}$ is a sequence satisfying (iii) and (iv). Define $\left\{c_{k}\right\}_{-\infty}^{\infty}$ by $c_{-k}^{2}=c_{k}{ }^{2}=\frac{1}{2} a_{k}{ }^{2}$ for $k \geqslant 1$, and $c_{0}=\max _{1 \leqslant k<\infty} a_{k}$. Then

$$
\sum_{-\infty}^{\infty} k^{2}\left|c_{k}\right|^{2}=\sum_{-\infty}^{\infty} \frac{1}{2} k^{2} a_{i k \mid}^{2}=\sum_{1}^{\infty} k^{2} a_{k}^{2} \leqslant 1,
$$

while $0<|i| \leqslant n<|j|$ implies $c_{j}{ }^{2}=\frac{1}{2} a_{|j|}^{2} \leqslant \frac{1}{2} a_{|i|}^{2}=c_{i}^{2}$, and again $\sum_{k>n} a_{k}^{2}=\sum_{|k|>n} c_{k}{ }^{2}$. Thus, $\alpha \geqslant \beta$, so that $\alpha=\beta$, completing the proof of Lemma 3.

To conclude the proof of Theorem 4 it remains to evaluate $\beta=\left[\mathscr{D}_{n}(\mathscr{S})\right]^{2}$. Toward this end, we let $J=\left[\frac{1}{2}(n+1)\right]$, and we observe that

$$
\begin{equation*}
\sum_{k=1}^{n+J-1} k^{2}>(J-1)(n+J)^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
J(n+J+1)^{2}>\sum_{k=1}^{n+J} k^{2} \tag{5}
\end{equation*}
$$

By (iv), we have

$$
\begin{equation*}
1-\sum_{1}^{n} k^{2} a_{k}^{2} \geqslant \sum_{n+1}^{\infty} k^{2} a_{k}^{2} \geqslant \sum_{n+1}^{n+J} k^{2} a_{k}^{2}+(n+J+1)^{2} \sum_{n+J+1}^{\infty} a_{k}^{2} . \tag{6}
\end{equation*}
$$

Using (iii) and (4), we see that

$$
\begin{align*}
\sum_{i=1}^{J} \frac{\sum_{k=1}^{n+J} k^{2}-J(n+i)^{2}}{J} a_{n+i}^{2} & \leqslant \min _{1 \leqslant k \leqslant n} a_{k}{ }^{2} \sum_{i=1}^{J} \frac{\sum_{k=1}^{n+J} k^{2}-J(n+i)^{2}}{J} \\
& =\min _{1 \leqslant k \leqslant n} a_{k}{ }^{2} \sum_{k=1}^{n} k^{2} \leqslant \sum_{k=1}^{n} k^{2} a_{k}{ }^{2} . \tag{7}
\end{align*}
$$

Combining (6) and (7) with (5) yields

$$
\begin{aligned}
1 & \geqslant \sum_{i=1}^{J} \frac{\sum_{k=1}^{n+J} k^{2}-J(n+i)^{2}}{J} a_{n+i}^{2}+\sum_{k=n+1}^{n+J} k^{2} a_{k}^{2}+(n+J+1)^{2} \sum_{k=n+J+1}^{\infty} a_{k}^{2} \\
& =\sum_{i=1}^{J}\left[\frac{\sum_{k=1}^{n+J} k^{2}-J(n+i)^{2}}{J}+(n+i)^{2}\right] a_{n+i}^{2}+(n+J+1)^{2} \sum_{k=n+J+1}^{\infty} a_{k}^{2} \\
& =1 / J \sum_{k=1}^{n+J} k^{2} \sum_{m=n+1}^{n+J} a_{m}{ }^{2}+(n+J+1)^{2} \sum_{k=n+J+1}^{\infty} a_{k}{ }^{2} \\
& =1 / J \sum_{k=1}^{n+J} k^{2} \sum_{m=n+1}^{\infty} a_{m}^{2}+\left[(n+J+1)^{2}-1 / J \sum_{k=1}^{n+J} k^{2}\right] \sum_{m=n+J+1}^{\infty} a_{m}{ }^{2} \\
& \geqslant 1 / J \sum_{k=1}^{n+J} k^{2} \sum_{m=n+1}^{\infty} a_{m}{ }^{2},
\end{aligned}
$$

or

$$
\begin{equation*}
\sum_{k>n} a_{k}^{2} \leqslant J / \sum_{k=1}^{n+J} k^{2} . \tag{8}
\end{equation*}
$$

Moreover, the upper bound in (8) can be attained by setting

$$
a_{i}{ }^{2}= \begin{cases}1 / \sum_{k=1}^{n+J} k^{2}, & \text { for } \quad 1 \leqslant i \leqslant n+J, \\ 0 & \text { for } \quad i>n+J\end{cases}
$$

It is clear that with this choice for $\left\{a_{i}\right\}$, (iii) and (iv) are satisfied, and

$$
\sum_{k>n} a_{k}{ }^{2}=J / \sum_{k=1}^{n+J} k^{2}
$$

Therefore,

$$
\beta=\left[\mathscr{D}_{n}(\mathscr{S})\right]^{2}=J / \sum_{k=1}^{n+J} k^{2},
$$

and Theorem 4 now follows immediately from the formula

$$
\sum_{k=1}^{N} k^{2}=(N(N+1)(2 N+1)) / 6 .
$$

Finally, combining the corollary to Theorem 2 with Theorem 4, we see that $\mathscr{D}_{n}(\mathscr{S})$ is asymptotic to $\frac{2}{3} \mathscr{C}_{n}{ }^{*}(\mathscr{S})$, and our comparison of these two means of approximation in \mathscr{S} is complete.

